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Analytical kinetics of clustering processes with cooperative action
of aggregation and fragmentation
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Some models of clustering processes are formulated and analytically solved employing generating functions
methods. Those models include events that result from combined action of the coagulation and fragmentation
processes. Fragmentation processes of two kinds, so-called similar and arbitrary, ones, are brought forward,
and the explicit forms of their solutions are produced. This implies some possibility of existence of different
aggregation mechanisms for clusters creation differing in their inner structure. All the models are based on ‘‘the
three-level bunch’’ scheme of interaction between the system states. Those states are described in terms of the
probability to find the system in the state with an exactly given number of clusters. The models are linear in the
probability functions due to the assumption that the rates of elementary acts are permanent. Some peculiarities
of application of the generating function method to solution of the linear differential-difference equations are
revealed. The illustration of the problem in terms of a traffic jam picture is not a specific one.
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I. INTRODUCTION

In the present work we develop and define more ac
rately our earlier considerations@1#. A cluster is generally
understood as either a number of things of the same k
growing together or number of particles, objects, etc., i
small, close group. This idea is a very general and no
specified one. An aggregation process in the formau1bu
5(a1b)u is referred as coagulation, when coefficientsa,b
represent the quantities of the scale unit ofu which are coa-
lesced with time. Aggregation and fragmentation are
couple of mutually inverse processes. The physical sc
~spatial, temporal, value of masses, etc.! vary in the many
orders of a magnitude for such a processes. That is why
idea of existence of a universal description of the above p
nomena arises and the unification of both direct and inve
processes in a general class of clustering processes see
natural one.

The clustering processes resemble to a certain degre
nucleation processes. This roots in the mathematical des
tion being general for kinetics of such processes despite
lack of obvious resemblance in their actual more precise
tails. On the one hand, we can see those approaches i
course of investigations on the molecular and submolec
level, in theories of condensed matter, nuclei, and nuc
chains@2#. On the other hand, clustering of disperse syste
are considered in astrophysics~forming of cosmic objects!,
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atmospheric science, chemistry, . . .@3#.
For example, an expanding universe is formed not

once. Clusters grow by coalescence of smaller clusters. T
growth kinetics is like the kinetics of coagulation. In wh
follows we formulate basic equations and outline the me
ods for their solution. Moreover, one could expect that th
retical tools developed to describe physical systems can
exploited in other fields, such as ecology of computation@4#
or biology, economics, transport problem, etc.@5,6#.

Consider the kinetics of formation of aG cluster using the
picture of a one-way motor lane. We assume that the star
configuration isG independent cars on the motor lane, t
leading one being the slowest, and no one can pass over
other. So, each initial cluster contains one car.

The process begins att50. On passing some timet, the
initial G cars group in clusters containingg1 ,g2 , . . . ,gs
cars. These clusters go on to coalesce. The problem i
determine the time evolution of the probabilit
ws(g1 ,g2 , . . . ,gs ;t) to find s clustersg1 ,g2 , . . . ,gs . The
sum of their massesgk are subjected to the constraint~con-
servation law!.

(
k51

s

gk5G ~1!

in the system. Thus, we are concerned only with nonrela
istic events and study systems with a permanent~additive!
mass and a finite number of particles.

Our goal is to formulate and investigate the exactly solv
models of the clustering~dissociation! processes, including
those that result from combined action of a certain aggre
tion and fragmentation.

The paper is organized as follows. In Sec. II, we expla
the stochastic motion of our objects, obtain the probability
finding out the system in the state of exactlys clusters and
©2002 The American Physical Society10-1
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FIG. 1. Generation scheme forG56.
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dependent on the time average number of clusters by m
of introducing a generating function. Later on, we formula
a master equation governing the time evolution of the pr
ability of finding the clusters of various masses~Sec. III!. We
solve that problem applying the Laplace transformation w
respect tot to master equation~Sec. IV!. Then we find the
probability to detect a cluster of assigned massg by summa-
tion of ws over allgk irrespective of the distribution of othe
participants, except for the selected one~Sec. V!. Some prop-
erties of those convolutions are true due to the isomorph
between a set of generating functions with a product op
tion and a set ofw(g) with convolution ~see Appendix as
well!, which have the structures of semigroups with unit.
the following we consider processes of similar fragmentat
~Sec. VI!, combined action of aggregation and similar fra
mentation~Sec. VII!, and the process with an arbitrary fra

FIG. 2. W functions versus time for pure aggregation proce
G55,g51. All curvesW(s,t) are marked by the numbers of the
proper state.
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mentation~Sec. VIII!. In conclusion, we discuss our resul
~Figs. 1–4!.

II. NUMBER OF CLUSTERS: PURE AGGREGATION
PROCESS

Let g be the rate of an elementary coalescence act;
adjacent clusters produce a single one~for instance, a dimer
is formed when a car catches up with another one!. We as-
sume thatg is g independent. Then we can characterize
situation by the number of intervals between adjacent c
ters. If there ares clusters in the system, the number
intervals iss21. Each coalescence act annihilates one in
val. The number of ways to do this is exactly equal to t
number of intervals.

. FIG. 3. W functions. Process of aggregation and similar fra
mentation. G55,g51.5,g151,g250.5. All curves W(s,t) are
marked by the numbers of the proper state.
0-2
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Let W(s,t) be the probability of meeting exactlys clus-
ters at the timet. Then

dW~s,t !

dt
5g@sW~s11,t !2~s21!W~s,t !#. ~2!

One can observe a ‘‘three-level bunch’’ scheme of transiti
between the three nearest~on s) states of the system unde
consideration. Equation~2! should be supplemented with th
initial conditions

W~s,0!5W0~s!. ~3!

In particular, if initially there were exactlyG independent
cars, the functionW0(s) obeys the equation

W0~s!5D~s2G!, ~4!

with D being the Kronecker delta:D(0)51, andD50 oth-
erwise.

Equation~2! can be solved by introducing the generati
function

F~z,t !5(
s

W~s,t !zs21. ~5!

Combining Eqs.~2! and ~5! gives

] tF5~12z!]zF. ~6!

The rateg is included in the definition of time. The initia
condition for an initially monodisperse system is rewritten
terms ofz as

F~z,0!5zG21. ~7!

The solution of Eq.~6! with the initial condition, Eq.~7!, has
the form

F~z,t !5@12e2t~12z!#G21. ~8!

FIG. 4. W functions. Aggregation with an arbitrary fragment
tion. G55,g52,g151,g251. All curvesW(s,t) are marked by the
numbers of the proper state.
01611
s

The probabilityW(s,t) is thus expressed in terms of bino
mial distributions

W~s,t !5CG21
s21 e2(s21)t~12e2t!G2s. ~9!

It is no problem to find the time dependence of the aver
number of clusters,

s̄~ t !5]zzF~z,t !uz51511~G21!e2t. ~10!

III. MASS DISTRIBUTION IN A PURE AGGREGATION
PROCESS

In analogy with the kinetics of disperse systems, we sh
refer togk as the cluster mass. Our goal now is to formula
the master equation governing the time evolution of
probability ws(g1 ,g2 , . . . ,gs ;t) to find the clusters of
massesg1 ,g2 , . . . at the timet. This equation is formulated
as follows:

dws

dt
5 (

[g8],k

ws11~g1 , . . . ,gk8 ,gk118 ,gk128 , . . . ,gs118 !

3D~gk2gk82gk118 !D~gk128 2gk11!, . . . ,D

3~gs118 2gs!2~s21!ws . ~11!

The meaning of the terms in the right hand side~rhs! of Eq.
~11! is rather apparent. The rate of losses is simply prop
tional to the number of empty intervals~the rate constantg is
included in the definition of time!. The gain occurs each tim
when two clusters of massesgk8 andgk118 coalesce producing
a new cluster of massgk . OtherD ’s simply restore the seria
numbers ofgi clusters withi ,k for the system ofs clusters.

Of course, initial conditions to Eq.~11! should also be
specified. We again assume that initially there wereG sepa-
rate cars,

wG~1,1, . . . ,1,t50!51, ~12!

and all other probabilities are 0.

IV. SOLUTION TO THE BASIC EQUATION

On applying the Laplace transformation with respect tt
gives, instead of Eq.~11!,

~p1s21!w̄s~g1 ,g2 , . . . !

5 (
[g8],k

w̄s11~g1 , . . . ,gk8 ,gk118 ,gk128 , . . . ,gs118 !

3D~gk2gk82gk118 !

3D~gk128 2gk11!, . . . ,D~gs118 2gs!, ~13!

where barred w̄ stands for the Laplace transform o
w(g1 ,g2 , . . . ;t). The last equation of this set is readi
solved@Eq. ~9!# to yield
0-3
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w̄G5
1

p1G21
. ~14!

Now let us try to seek a solution to Eq.~11! in the form

w̄s~g1 ,g2 , . . . ;,p!

5
As~g1 ,g2 , . . . !

~p1G21!~p1G22!, . . . ,~p1s21!
,

~15!

where the coefficientsA are independent ofp and satisfy the
following set of recurrence relations:

As~g1 ,g2 , . . . !

5 (
[g8],k

As11~g1 , . . . ,gk8 ,gk118 ,gk128 , . . . ,gs118 !

3D~gk2gk82gk118 !

3D~gk128 2gk11!, . . . ,D~gs118 2gs!. ~16!

A useful sum rule

Qs5sQs11 ~17!

follows immediately from Eq. ~16!, where Qs
5(As(g1 ,g2 , . . . ,gs) ~summation runs over allg), or

Qs5
~G21!!

~s21!!
. ~18!

In fact, the expressionAs(g1 , . . . ,gs) depends ons only. It
does not depend on the distribution of numbersg1 , . . . ,gs

provided that(k51
s gk5G, gk>1 are conserved.

It can be seen from Eqs.~11!, ~13!, ~9!, and ~2! that the
problem under consideration splits into two subproblem
The first one is the time evolution problem. It deals w
transitions between different states of the system and c
nects each three nearest adjacent states. The second sub
lem is to scrutinize mass spectra. It is a pure combinato
task. In fact, we have to deal with some population dyna
ics. Mass spectra at instantt originate from the interchang
of generations at a givenG, and the proper weights depen
on the whole set of possible transitions froms11 states to
the s state under consideration.

With the induction method, one obtains the following:
~i! AG(1, . . . ,1)51 is the only possible value.
~ii ! The number of terms in Eq.~16! is equal to

(
k51

s

gk215 (
k51

s

gk2 (
k51

s

15G2s

for eachs fixed andk fixed. Under the inductive assumptio
one can write downAs11(g18 , . . . ,gs118 )5As11. From this
it follows that As(g1 , . . . ,gs)5(G2s)As11 irrespective of
a specific distribution ofg1 , . . . ,gs .

The recurrence equations obtained just now
01611
.
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As5~G2s!As11 , ~19!

AG51

have solutions

As5~G2s!!. ~20!

The time dependence can be readily restored by using
inversion

1

~p1s21!~p1s!, . . . ,~p1G21!

→ 1

~G2s!!
e2(s21)t~12e2t!G2s. ~21!

Equations~16!, ~17!, and~21! reproduce Eq.~9! as well.
The final result is formulated as follows:

ws~g1 ,g2 , . . . ,gs ;t !5e2(s21)t~12e2t!G2s

3D~G2g12g22, . . . ,gs!.

~22!

V. SINGLE-CLUSTER DISTRIBUTION IN A PURE
AGGREGATION PROCESS

Here we determine the probability to find a cluster
massg irrespective of the distribution of other participant
To this end we sumws over all gk except one (g1, for ex-
ample!,

w~g,t !5(
gk

ws~g,g2 , . . . ,gs ;t !

5e2(s21)t~12e2t!G2s

3(
gk

D~G2g2g22, . . . ,gs!. ~23!

Using the identities

D~q!5H 1, q50

0, q51,2, . . .J 5
1

2p i R dz

zqz
,

H 0, q50

1, q51,2, . . .J 5
1

2p i R zdz

zq~12z!
, ~24!

1

2p i R dz

zr 11~12z!R11
5CR1r

r 5CR1r
R ,

one finds the convolution in Eq.~23!,

w~g,t !5e2(s21)t~12e2t!G2s
1

2p i R zs21dz

zG2g~12z!s21z

5CG2g21
s22 e2(s21)t~12e2t!G2s. ~25!
0-4
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Some important properties of the convolutions are discus
in the Appendix.

VI. SIMILAR FRAGMENTATION PROCESS

Let us consider a process of pure fragmentation~dissocia-
tion, decay! of clusters. We assume the innerG-cluster struc-
ture att50 to be similar to the picture att50 with G cars of
unit mass in Sec. II and, thus, withG21 intervals between
them . An analogous assumption applies to all thes clusters
at tÞ0. We will understand ‘‘the similarity of an inner clus
ter structure and an outer one’’ in such a purport. In additi
let us suppose a qualitative equivalence of all the inner
tervals between constituents of a cluster.

At the above pure aggregation mechanism the pl
where a coalescence act has happened is partly forgo
When two adjacent clusters enumeratedks and (k11)s ac-
cording to enumeration of ans-cluster state with sizes~see
below! (gk8)s and (gk118 )s coagulate, a new cluster of the siz
(gk)s215(gk8)s1(gk118 )s arises. The cluster ordinal numbe
ks21 is given in terms of the new (s21)-cluster state tha
originates from the act of coagulation as in Sec. III.

Evidently, a partial loss of memory on the way in whic
the microscopic state has been created comes about a
very place because the inverse problem of one-to-one
building of the previouss-cluster state~the outer state! can-
not be solved. On the other hand, the things are the s
with the interior structure of some cluster. Its cluster pare
cannot be reconstructed one-to-one as well. When one lo
at a system state or some cluster as something given
exact information about ordinal numbers and sizes of a
cent cluster parents and even the mother state is forgo
That is why one can talk about a loss of memory in suc
process. On the whole it is the reason to postulate so
equivalence of constituents and intervals between them
the inner cluster space.

This set of assumptions results in the dependence of
probability functions on the size of a cluster and the tim
only.

Let us realize the cluster size as the number of partic
confined in the given cluster, letg be the rate of an elemen
tary fragmentation act.

If a fragmentation rate is proportional to the cluster s
minus unit, i.e., the number of possible rupture places
equal to the number of inner intervals, the equation

dW~s,t !

dt
5g@~G2s11!W~s21,t !2~G2s!W~s,t !#,

~26!

with initial conditions

W~1,0!51; W~s,0!50, if sÞ1, ~27!

describes the process under consideration. The rhs of
~26! consists of a gain term due to decay of clusters belo
ing to ans21-cluster state and a loss term due to decays
those clusters belonging tos-cluster state that produces th
01611
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clusters pertaining to ans11-cluster state. Equation~26! can
be solved by using the generating function introduced by
equation

]

]t
F~z,t !2~2z2g1zg!

]

]z
F~z,t !

5g~zG2z2G11!F~z,t !, ~28!

with the solution

F~z,t !52
~z1e(2gt)2e(2gt)z!G

2z2e(2gt)1e(2gt)z
. ~29!

Of course, one recognizes a usual Poissonian process he
seems contextual and, hence, quite reasonable to name
a process as a similar fragmentation~process!.

For example, forG55,

W15e(24gt), ~30!

W254e(23gt)24e(24gt), ~31!

W356e(22gt)212e(23gt)16e(24gt), ~32!

W454e(2gt)212e(22gt)112e(23gt)24e(24gt), ~33!

W55124e(2gt)16e(22gt)24e(23gt)1e(24gt). ~34!

The average number of clusters reads

s̄~ t !5]zzF~z,t !uz515e(2gt)1G~12e(2gt)!. ~35!

VII. PROCESS OF AGGREGATION AND SIMILAR
FRAGMENTATION

Let us consider such a clustering process, which runs
result of some combined action both of the aggregation
the similar fragmentation. Letg1 andg2 be constant rates o
an elementary coalescence act and an elementary fragm
tion act, respectively,

dW~s,t !

dt
5g1@sW~s11,t !2~s21!W~s,t !#

2g2@~G2s!W~s,t !2~G2s11!W~s21,t !#,

~36!

with initial conditions

W~G,0!51; W~s,0!50, if sÞG. ~37!

The rhs of Eq.~36! consists of gain terms due to coagulatio
of clusters from an (s11)-cluster state and dissociation o
those clusters belonging to an (s21)-cluster state and los
terms due to simultaneous coalescence and dissociatio
clusters belonging to ans-cluster state. To make things mor
clear, we could rewrite Eq.~36! in the form
0-5
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dW~s,t !

dt
5@g1sW~s11,t !1g2~G2s11!W~s21,t !#

2@g1~s21!W~s,t !1g2~G2s!W~s,t !#.

~38!

These equations can be solved by using the genera
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function F(z,t) defined by the equation

]

]t
F~z,t !2~2z2g22zg11zg21g1!

]

]z
F~z,t !

5g2~zG2z2G11!F~z,t !, ~39!

whose solution is
F~z,t !5gS zg21g1e(2tg)z2g1e(2tg)1g1

g D GY~zg21g1e(2tg)z2g1e(2tg)1g1!, ~40!
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where

g5g11g2 . ~41!

For example, forG55,

W150.683 013 455 4~e(21.1 t)21!4, ~42!

W2522.732 053 822~e(21.1t)21!3~0.11e(21.1t)!,
~43!

W354.098 080 732~e(21.1t)21!2~0.11e(21.1t)!2, ~44!

W4522.732 053 822~e(21.1t)21!~0.11e(21.1t)!3,
~45!

W550.683 013 455 4~0.11e(21.1t)!4. ~46!

The average number of clusters is given by the formu

s̄~ t !5]zzF~z,t !uz51

512
g21g1e(2tg)

g
1

G~g21g1e(2tg)!

g
. ~47!

VIII. PROCESS WITH AN ARBITRARY FRAGMENTATION

Let us assume that clusters lose the memory of their
gregation history completely. This means that a hypothet
mechanism of such a kind of aggregation loses not only
place of a coalescence act~Sec. VI!, but in this case the inne
structure of a cluster does not coincide with outer one,
comes a uniform one, and let us say ‘‘is beside itse
g-
al
e

-
’’

Shortly speaking, the mass distribution inside a cluster
comes a uniform one under such an aggregation, i.e.,
inner structure does not depend on the cluster size~see Sec.
VI, and hence, the actual number of inner intervals~see Sec.
VII ! is equal to 0.

However, let us apply the ‘‘three-level bunch’’ scheme
transitions~connections! between the three nearest clust
states, widely used above. That is, in fact, one of the m
subjects under consideration in this paper.

In this case, it is reasonable to assume that the fragm
tation rate depends solely on the outer cluster state indi
That is the rate depends on the integer number of the clus
or the intervals minus unit between them for the states
longing to such a three-level bunch. Adding the context
‘‘natural’’ condition of stopping the fragmentation process
s5G, the corresponding equation reads

dW~s,t !

dt
5g1@sW~s11,t !2~s21!W~s,t !#2g2

3@~12D~G2s!!sW~s,t !2~s21!W~s21,t !#,

~48!

with initial conditions

W~G,0!51; W~s,0!50, if sÞG, ~49!

where g1 and g2 are the constant rates of an elementa
coalescence act and of an elementary fragmentation act
spectively. Equation~48! is constructed so as to absorb th
conditions W(G11,t>0)50,W(0,t>0)50. We shall see
below, the solutions of Eq.~48! bear out this assertion.

It should be noted, that the mass spectra of clusters
process Eqs.~48! and~49! differ from those in Secs. III and
V.

Equation~48! can be solved for eachG. If, for example,
G55,
0-6
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W~s,t !5(
i 51

G

Cie
l i tAsi , ~50!

C5@0.447 21,20.447 21,20.447 21,20.447 21,20.447 21#, ~51!

l5@210.953 89,25.731 17,22.571 63,2.743 29,0#, ~52!

A5F 0.010 96, 0.113 76,20.430 96, 0.775 37,20.447 21

20.109 09,20.538 25, 0.677 32, 0.199 04,20.447 21

0.428 39, 0.678 14, 0.360 55,20.163 09,20.447 21

20.777 46, 0.193 55,20.159 69,20.364 11,20.447 21

0.447 21,20.447 21,20.447 21,20.447 21,20.447 21

G . ~53!
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IX. CONCLUSION

In this paper, we are interested in kinetics of cluster f
mation and construct a number of analytically solved mod
of such a process. It does not matter whether a motor lan
computational network, space dust, or glass is a real envi
ment to match such a script. The illustration of the probl
in terms of a traffic jam is not a specific one. The know
technical and natural phenomena of traffic jam or aggre
tion ~coagulation! and their evolution have been consider
as processes of clustering~nucleation!.

Brought forward in this work, the kinetics models tak
account of both the aggregation~coagulation! and the frag-
mentation~decay! processes. Previous studies of nonline
Lotka-Volterra systems@7# brought us to a search for a po
sibility to give a linear description of those very complicat
and nonlinear situations or for something akin to such a p
ture. A dynamical description of some system could be s
stituted by a stochastic one. We consider one-dimensio
cases~in the coordinate sense! but the scenarios should b
valid for the three dimensions if there is a spherical symm
try.

When we deal with a system of a finite number of p
ticles, a natural way of the above substitution is to use
language of enumerated states of that system. A state of
sort is characterized by the population number and proba
ity function to reveal the system itself in this state exac
The ‘‘three-level bunch’’ scheme of transitions between
three nearest states of the system is natural as well
course, that probability should depend upon the probab
of something else to happen. In the case considered, it c
be an act of coalescence or decay~ dissociation, fragmenta
tion, etc., where the term depends on the application!. Thus,
we have just met a product of probabilities. What can o
do?

The probability~rate! of the above acts could be depe
dent or independent on the system states or its partic
attributes. In the case of such a dependence, one can
nothing without a special investigation. On the contrary,
rate independence of the above circumstances makes
situation a linear one in the state probability function. Let
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take into account that the rates may be independent not
of macro parameters but also of the cluster size~e.g., if
coalescence/fragmentation depends only on the valenc
some chemical clusters!. This leads to our key mathematica
assumption of the above rates being constant. That is why
obtain linear analytically solved master equations of t
clustering kinetics, which are also evolutionary-type equ
tions.

The very method to solve most of those problems is in
of the generating function.

But some peculiarities of applying of this method f
solving the linear differential-difference equations are
vealed. It becomes useless when the structure homoge
of terms in the rhs of equations discussed is violated a
result of combining aggregation and fragmentation term
i.e., owing to violation of the Markovian semigroup structu
of those rhs The latter, as well as symmetry, momenta,
other questions~e.g., universality of the three-level bunc
scheme! not included in this sketch will be considered
more detail in papers to follow, as well as some details of
utilization of aMAPLE program, used to obtain some analy
cal results, which is to be published in Ref.@9#.

Other questions about the mass spectra and the sin
cluster mass distribution in a pure aggregation process
to display the combinatorial nature of the problem und
consideration and its closeness to some population dyna
problem. They are solved by means of the Laplace trans
mation, which leads to the calculation of certain convo
tions. The properties of those convolutions are true due to
isomorphism between a set of generating functions wit
product operation and a set ofw(g) with convolutions,
which results in a useful formula.

It should be remembered, that we considered two type
fragmentation: the similar fragmentation and the arbitra
one. They lead to different results. Such a difference can
realized as a manifestation of distinction between collect
and more discrete additive properties of a cluster on a v
abstract level, far off from a specific nature of that clust
Moreover, we shall see the possible existence of several
gregation mechanisms~for a variety of reasons!. Thus, one
and the same stochastic description of the aggregation
0-7
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mask a number of processes diverse in their dynamical
tails.

However, the generality of the results is restricted. T
conjecture that the rates are constant (g1,25const1,2) is
nowadays somewhat at odds with what is known about m
lecular and atomic clusters, and processes for nanoscale
of matter. Obviously, the mentioned conjecture reduce
mathematical universality as well. We are grateful to the r
eree for drawing our attention to the necessity of making
remark.

Nevertheless, the authors hope that appropriate proce
of such a type may be found by the following reason. T
presented formalism is independent of any physical sc
The only conjecture of the possibility to draw distinctio
between certain particles and intervals between them
been done. Such an admissibility could be combined w
not only a classical conception but a quantum one un
some conditions~e.g., if the first Born approximation is
valid! as well.

The present work belongs to the stream originating fr
the famous Smoluchovski articles@8#.
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APPENDIX

Let

N050,1,2, . . . ,

a~n!5an , nPN0 ,

A5$a:N0→R%, ~A1!

F5H f :C→C, f ~z!5 (
nPN0

anznJ .
.

0

e
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The reversible mappingZ:A→F,

f 5Z~a! so as f ~z!5 (
nPN0

a~n!zn ~A2!

has the inverse mappingZ21,

a5Z21~ f ! so as a~n!5 R f ~z!
dz

zn11
, nPN0 . ~A3!

The convolution+ is an operation on a setA such that

c5a+b if c~k!5(
j 50

k

a~k2 j !b~ j !. ~A4!

The mappingZ is a morphism of a semigroup (A,+)
to a semigroup (F,•). Z maps the convolution+ to the
product
• :

c5a+b→Z~c!5Z~a!Z~b!. ~A5!

The associative and commutative semigroup (A,+) has the
unit D,

D~0!51, D~n!50, nÞ0,

Z~D!51, Z21~1!5D. ~A6!

Here is a useful formula

~a1+a2+, . . . ,+an!~m!5 (
$ j kPN0%

a1~ j 1!, . . . ,an~ j n!

3D~m2 j 12, . . . ,2 j n!. ~A7!
.
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