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Some models of clustering processes are formulated and analytically solved employing generating functions
methods. Those models include events that result from combined action of the coagulation and fragmentation
processes. Fragmentation processes of two kinds, so-called similar and arbitrary, ones, are brought forward,
and the explicit forms of their solutions are produced. This implies some possibility of existence of different
aggregation mechanisms for clusters creation differing in their inner structure. All the models are based on “the
three-level bunch” scheme of interaction between the system states. Those states are described in terms of the
probability to find the system in the state with an exactly given number of clusters. The models are linear in the
probability functions due to the assumption that the rates of elementary acts are permanent. Some peculiarities
of application of the generating function method to solution of the linear differential-difference equations are
revealed. The illustration of the problem in terms of a traffic jam picture is not a specific one.
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[. INTRODUCTION atmospheric science, chemistry, .[3].
For example, an expanding universe is formed not at
In the present work we develop and define more accuonce. Clqsters grow by coalescgnce of smaller_clusters. Their

understood as either a number of things of the same kinfpllows we formulate basic equations and outline the meth-

growing together or number of particles, objects, etc., in aods for their solution. Moreover, one could expect that theo-

small. close aroun. This idea is a verv general and not retical tools developed to describe physical systems can be
group. _ Y9 %xploited in other fields, such as ecology of computafién
specified one. An aggregation process in the faui-bu or biology, economics, transport problem, €&,6].

=(a+b)uis referred as coagulation, when coefficieats Consider the kinetics of formation of@ cluster using the
represent the quantities of the scale uniuathich are coa- picture of a one-way motor lane. We assume that the starting
lesced with time. Aggregation and fragmentation are aconfiguration isG independent cars on the motor lane, the
couple of mutually inverse processes. The physical scaldgading one being the slowest, and no one can pass over each
(spatial, temporal, value of masses, etary in the many other. So, each initial cluster contains one car.

orders of a magnitude for such a processes. That is why, an The process begins &&0. On passing some time the

idea of existence of a universal description of the above phdhitial G cars group in clusters containings,gz, - - . gs
nomena arises and the unification of both direct and inverséars' These clusters go on to coalesce. The problem is to

processes in a general class of clustering processes seem glermine  the ] time evolution of the probability
natural one. Ws(01,02, - - - ,0s;t) to find s clustersg,,0,, . ..,0s. The

. . um of their masseg, are subjected to the constraiition-
The clustering processes resemble to a certain degree t@%rvation law el ) L

nucleation processes. This roots in the mathematical descrip-

tion being general for kinetics of such processes despite the °

lack of obvious resemblance in their actual more precise de- kzl 9w=G @

tails. On the one hand, we can see those approaches in the

course of investigations on the molecular and submoleculan the system. Thus, we are concerned only with nonrelativ-

level, in theories of condensed matter, nuclei, and nucleaistic events and study systems with a permar(edditive

chains[2]. On the other hand, clustering of disperse systemsnass and a finite number of particles.

are considered in astrophysi@f®rming of cosmic objecis Our goal is to formulate and investigate the exactly solved
models of the clusteringdissociation processes, including
those that result from combined action of a certain aggrega-

*Electronic address: dubovik@thsunl.jinr.ru tion and fragmentation.

"Electronic address: galperin@vxjinr.jinr.ru The paper is organized as follows. In Sec. II, we explain
*Electronic address: rqutsk@cv.jinr.ru the stochastic motion of our objects, obtain the probability of
$Electronic address: alush@cc.nifhi.ac.ru finding out the system in the state of exac$lglusters and
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FIG. 1. Generation scheme f@&=6.

dependent on the time average number of clusters by meamsentation(Sec. VIII). In conclusion, we discuss our results
of introducing a generating function. Later on, we formulate(Figs. 1-4.

a master equation governing the time evolution of the prob-

ability of finding the clusters of various masg&ec. ). We

solve that problem applying the Laplace transformation with  |I. NUMBER OF CLUSTERS: PURE AGGREGATION

respect tot to master equatiofSec. 1\). Then we find the PROCESS

probability to detect a cluster of assigned mgdy/ summa-

tion of w, over allg, irrespective of the distribution of other L€t ¥ be the rate of an elementary coalescence act; two
participants, except for the selected d¢Bec. \j. Some prop- gdjacent clusters produce a single cﬁfw instance, a dimer
erties of those convolutions are true due to the isomorphisrif formed when a car catches up with another)olée as-
between a set of generating functions with a product opera8Ume thaty is g independent. Then we can characterize the
tion and a set ofv(g) with convolution (see Appendix as situation by the number of |_ntervals between adjacent clus-
well), which have the structures of semigroups with unit. Inters: If there ares clusters in the system, the number of
the following we consider processes of similar fragmentatiorintervals iss—1. Each coalescence act annihilates one inter-
(Sec. VI, combined action of aggregation and similar frag-VaL The nu_mber of ways to do this is exactly equal to the
mentation(Sec. VII), and the process with an arbitrary frag- "umber of intervals.

1 11

0.81

0’ ; T, ¢ : Tt : i

FIG. 2. W functions versus time for pure aggregation process. FIG. 3. W functions. Process of aggregation and similar frag-

G=5,y=1. All curvesW(s,t) are marked by the numberof the mentation. G=5,y=1.5,y,=1,y,=0.5. All curves W(s,t) are
proper state. marked by the numbes of the proper state.
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11 The probabilityW(s,t) is thus expressed in terms of bino-
mial distributions
0.8 W(S’t)zc(saillef(sf 1)t(1_e7t)Gfs. (9)
06! It is no problem to find the time dependence of the average
“1is number of clusters,
W
0.4{, S(t)=d,zF(z,t)],_,=1+(G—1)e L. (10)
0.2 3 Il. MASS DISTRIBUTION IN A PURE AGGREGATION
/7 PROCESS
0 3 H i 5 10 In analogy with the kinetics of disperse systems, we shall
t refer togy as the cluster mass. Our goal now is to formulate
FIG. 4. W functions. Aggregation with an arbitrary fragmenta- the ma}s',ter equation governing the' time evolution of the
tion. G=5,y=2,9,=1,7,=1. All curvesW(s,t) are marked by the Probability w(g;.,9,, ... .gs;t) to find the clusters of
numbers of the proper state. masseg;,9», . . . at the time. This equation is formulated
as follows:
Let W(s,t) be the probability of meeting exactk/clus- d
ters at the timet. Then Ws b ' '
at Zk Ws1(91, - Ok Ok+1: k420 - - - Fst1)
dW(s,t) la'l,
g - AsWs+1H—(s—DW(s)]. (2 XA(Gk— 9k~ ks DA (k2= Gkr1), - - - A
X(ge11—9s) — (5= 1)ws. (11

One can observe a “three-level bunch” scheme of transitions
between the three neargsin s) states of the system under
consideration. Equatiof2) should be supplemented with the
initial conditions

The meaning of the terms in the right hand s{des) of Eq.

(11) is rather apparent. The rate of losses is simply propor-
tional to the number of empty intervalthe rate constany is

3) included in the definition of time The gain occurs each time
when two clusters of massgg andg,, ; coalesce producing

In particular, if initially there were exactlys independent & new cluster of masgy . OtherA’s simply restore the serial

W(s,0)=Wq(S).

cars, the functiot,(s) obeys the equation numbers ofy; clusters withi <k for the system o5 clusters.
Of course, initial conditions to Eq.11) should also be
Wy(s)=A(s—G), (4) specified. We again assume that initially there w@rsepa-
rate cars,
with A being the Kronecker deltas(0)=1, andA=0 oth-
erwise. wg(1,1,...,1t=0)=1, (12
Equation(2) can be solved by introducing the generating
function and all other probabilities are 0.
Fizt)=3 W(s )z L. 5) IV. SOLUTION TO THE BASIC EQUATION
° On applying the Laplace transformation with respect to

Combining Eqs(2) and(5) gives gives, instead of Eq11),

HF=(1-2)0,F. (6) (P+S—1)Wy(g1.,0, - - )
The ratevy is included in the definition of time. The initial _ - ro , ,
condition for an initially monodisperse system is rewritten in [gsz Ws1(91: - - GkcoGicr 1Ok - - Gsr)

terms ofz as ) )
XA(Gk— 9k~ Gk+1)

_,G-1
R0z " XA(Gha= G - AGL 10, (13
The solution of Eq(6) with the initial condition, Eq(7), has _
the form where barredw stands for the Laplace transform of
w(g1,92, ...;t). The last equation of this set is readily
F(zt)=[1—-e Y(1—-2)]¢ L (8)  solved[Eq. (9)] to yield
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— 1

WG:m. (14)

Now let us try to seek a solution to E@L1) in the form

V_Vs(glrgZI L rvp)
B As(91.02, - - -)
(p+G—-1)(p+G-2),...,(p+s—1)’

(19

where the coefficientd are independent qf and satisfy the
following set of recurrence relations:

As(91,92, - --)
= Asi1(91s -+ Gk s Ok 1:Gks25 - - - Fer1)
[9'].k
X A(Gk— k= Gk+1)
XA(Gks2=Oks1)s -+ - A(Ger1—0s).  (16)
A useful sum rule
Qs=5Qs+1 (17)
follows immediately from Eg. (16), where Qg
=>A(01,92, . . . .gs) (Summation runs over atj), or
(G—-1)!
TSI 18

In fact, the expressioAq(g;, . . . ,ds) depends ors only. It
does not depend on the distribution of numbeys . . . ,gs
provided thatt;_,9,=G, g,=1 are conserved.

It can be seen from Eq$ll), (13), (9), and(2) that the

PHYSICAL REVIEW E 66, 016110 (2002

As=(G—9s)Agi1, (19
Ag=1
have solutions
A=(G—9)!. (20)

The time dependence can be readily restored by using the
inversion

1
(p+s—=1)(p+tS),...(p+G—-1)

1
T (G—9)!

e*(sfl)t(l_ eft)Gfs'

(21)

Equations(16), (17), and(21) reproduce Eq(9) as well.
The final result is formulated as follows:

WS(glag2| P ,gs;t):ef(sfl)t(l_e,t)eis

XA(G—01—92—, - .8s)-

(22

V. SINGLE-CLUSTER DISTRIBUTION IN A PURE
AGGREGATION PROCESS

Here we determine the probability to find a cluster of
massg irrespective of the distribution of other participants.
To this end we sumvg over all g, except one ¢,, for ex-
ample,

W(gat)ZZ WS(91921 L 1gSvt)

9k

— e*(sfl)t(l_ eft)Gfs

problem under consideration splits into two subproblems.

The first one is the time evolution problem. It deals with X2 A(G=g—0go—, ... 0. (23)
transitions between different states of the system and con- %
nects each three nearest adjacent states. The second subprgBimg the identities
lem is to scrutinize mass spectra. It is a pure combinatorial
task. In fact, we have to deal with some population dynam- 1, q=0 1 dz
ics. Mass spectra at instanbriginate from the interchange A(q)=[ ] =— 0 —,
of generations at a give@, and the proper weights depend 0,9=12,...) 27 J 2%
on the whole set of possible transitions fra 1 states to
the s state under consideration. 0, =0 1 zdz

With the induction method, one obtains the following: 1, q=12,...| 2m 3€ 12’ (24)

(i) Ag(1,...,1)=1 is the only possible value.

(ii) The number of terms in Eq16) is equal to 1 4z

r R
s s s >0 W: Rir=CRirs
one finds the convolution in Eq23),

for eachs fixed andk fixed. Under the inductive assumption, o1
one can write dowrA, 1(95, . .. .95, 1) =Ass1. From this W(g,t)=e-(-D(1—g 1G-S 1 3€ z 7dz
it follows that Ag(g1, . . . .9s) =(G—S)Aq, 1 irrespective of ’ 2mi J 28-9(1-2)5712
a specific distribution 0§, ... ,gs.

The recurrence equations obtained just now =Cg 18 O (1-eHC s (29

016110-4
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Some important properties of the convolutions are discusseclusters pertaining to as+ 1-cluster state. Equatidi26) can

in the Appendix. be solved by using the generating function introduced by the
equation
VI. SIMILAR FRAGMENTATION PROCESS P p
Let us consider a process of pure fragmentafitissocia- S FEH-(- Z*y+zy) 77 @0
tion, decay of clusters. We assume the inr@+cluster struc-
ture att=0 to be similar to the picture a0 with G cars of =y(zG—-z—-G+1)F(z1), (28

unit mass in Sec. Il and, thus, with—1 intervals between
them . An analogous assumption applies to allstdusters ~ With the solution
att#0. We will understand “the similarity of an inner clus- o G
ter structure and an outer one” in such a purport. In addition, Fzt)= — (z+elm "M —e("Mz)
let us suppose a qualitative equivalence of all the inner in- ' NS DN P
tervals between constituents of a cluster.

At the above pure aggregation mechanism the plac®f course, one recognizes a usual Poissonian process here. It
where a coalescence act has happened is partly forgotteseems contextual and, hence, quite reasonable to name such
When two adjacent clusters enumerakgdand k+1)s ac-  a process as a similar fragmentatigmocess

(29

cording to enumeration of ascluster state with sizetsee For example, folG=5,

below) (gx)s and @, ;)s coagulate, a new cluster of the size

(90s—1=(91)s+ (91 1)s arises. The cluster ordinal number W, =4, (30)
ks_1 is given in terms of the news(-1)-cluster state that

originates from the act of coagulation as in Sec. Ill. W, =4e(37 — 4e(=47), (32)

Evidently, a partial loss of memory on the way in which
the microscopic state has been created comes about at the
very place because the inverse problem of one-to-one re-
building of the previous-cluster statdthe outer staecan-
not be solved. On the other hand, the things are the same
with the interior structure of some cluster. Its cluster parents
cannot be reconstructed one-to-one as well. When one looks ~ Ws=1—4e(" " +6el"27 —4el"3M 1 e(=4M (34
at a system state or some cluster as something given, the
exact information about ordinal numbers and sizes of adjal "€ average number of clusters reads
cent cluster parents and even the mother state is forgotten. _

That is why one can talk about a loss of memory in such a s(t)=0d,zF(z,t)|,— =W+ G(1—e"M). (35
process. On the whole it is the reason to postulate some

equivalence of constituents and intervals between them in VIl. PROCESS OF AGGREGATION AND SIMILAR

the inner cluster space. _ FRAGMENTATION

This set of assumptions results in the dependence of the
probability functions on the size of a cluster and the time Let us consider such a clustering process, which runs as a
only. result of some combined action both of the aggregation and

Let us realize the cluster size as the number of particleghe similar fragmentation. Leg; andy, be constant rates of
confined in the given cluster, let be the rate of an elemen- an elementary coalescence act and an elementary fragmenta-
tary fragmentation act. tion act, respectively,

If a fragmentation rate is proportional to the cluster size
minus unit, i.e., the number of possible rupture places is dW(s,t)

W;=6el- 20— 1263 4 gel 40, (32)

W,=4e(" M —12e("27 + 12e(~3M —4e(~47M = (33)

equal to the number of inner intervals, the equation —gr - YalsWs+1H - (s-DW(s,t)]
dW(s.t) [ (G—S)W(sit)— (G—s+ 1)W(s— 11)],
T:’y[(G—S-F DHW(s—1t)—(G—s)W(s,1)], (36)
(26)

with initial conditions

ith initial .
with initial conditions WG.0)=1: W(s0)=0, if s£G. (37)

W(1,0=1; W(s,0=0, if s#1, (27)  The rhs of Eq(36) consists of gain terms due to coagulation
of clusters from an £+ 1)-cluster state and dissociation of
describes the process under consideration. The rhs of Ethose clusters belonging to as—1)-cluster state and loss
(26) consists of a gain term due to decay of clusters belongterms due to simultaneous coalescence and dissociation of
ing to ans— 1-cluster state and a loss term due to decays o€lusters belonging to asicluster state. To make things more
those clusters belonging ®cluster state that produces the clear, we could rewrite Eq.36) in the form

016110-5
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dW(s,t)

—at [v1SW(s+1t)+ y,(G—s+1)W(s—1}t)]

—[ri(s=DHW(s,t) + y2(G—5)W(s,1)].
(38)

PHYSICAL REVIEW E 66, 016110 (2002

function F(z,t) defined by the equation

J J
EF(Z,t)_(_Zzﬁ_ZYl‘F Zy,+ Yl)EF(Z,t)

=7y,(2zG-z—G+1)F(z1), (39

These equations can be solved by using the generating whose solution is

G
/(27’2‘*' y1607Mz— y "M 1)), (40)

Shortly speaking, the mass distribution inside a cluster be-
comes a uniform one under such an aggregation, i.e., the
inner structure does not depend on the cluster @ee Sec.
VI, and hence, the actual number of inner intervakse Sec.
VIl) is equal to 0.

However, let us apply the “three-level bunch” scheme of
transitions (connections between the three nearest cluster
states, widely used above. That is, in fact, one of the main

zy,+ y.e8"Mz—y,e" 4
F(zt)=y Y2T Y1 Y1 Y1
Y
|
where
y=nt7.. (41)
For example, foilG=5,
W, =0.683013455 e~ 110 —1)4 (42)

W,=—2.732053 82" 11— 1)3(0.1+ (- 2 1))
(43

W,=4.098 080 732e(~ 1) — 1)2(0.1+e("+1)2 (44

W,=—2.732053 822"+ — 1)(0.1+ ("1 1)3,
(49)

Ws=0.683 013 455 40.1-+ e(~ 1-1)4, (46)

The average number of clusters is given by the formula

S(t)zazZF(Z-t”z:l
Y2t y,el71) N G(yz+ y,607)
Y Y '

=1

(47)

VIIl. PROCESS WITH AN ARBITRARY FRAGMENTATION

subjects under consideration in this paper.

In this case, it is reasonable to assume that the fragmen-
tation rate depends solely on the outer cluster state indices.
That is the rate depends on the integer number of the clusters
or the intervals minus unit between them for the states be-
longing to such a three-level bunch. Adding the contextual
“natural” condition of stopping the fragmentation process at
s=G, the corresponding equation reads

dW(s,t)
TR Yi[SWMs+ 1) —(s—1HW(s,t) |-y,

X[(1-A(G—5s))sW(s,t)—(s—1)W(s—1})],
(48)

with initial conditions

W(G,00=1; W(s,00=0, if s#G, (49
where y; and y, are the constant rates of an elementary
coalescence act and of an elementary fragmentation act, re-
spectively. Equatior{48) is constructed so as to absorb the

conditions W(G+1t=0)=0W(0,t=0)=0. We shall see

Let us assume that clusters lose the memory of their agselow, the solutions of Eq48) bear out this assertion.
gregation history completely. This means that a hypothetical It should be noted, that the mass spectra of clusters for
mechanism of such a kind of aggregation loses not only th@rocess Eq948) and(49) differ from those in Secs. Il and
place of a coalescence d8ec. V), but in this case the inner V.
structure of a cluster does not coincide with outer one, be- Equation(48) can be solved for eacB. If, for example,
comes a uniform one, and let us say “is beside itself.” G=5,
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G
W(s,t)= >, CielitAy, (50)
i=1
C=[0.44721,-0.44721,—-0.447 21,—0.447 21,—0.447 21, (51
A=[—10.95389;-5.73117;-2.57163.74329,, (52)

- 0.01096, 0.11376,-0.43096, 0.77537-0.447 21]
—0.10909,-0.53825, 0.67732, 0.19904,0.44721
A= 0.42839, 0.67814, 0.36055;0.16309,—0.44721| . (53
—0.77746, 0.19355-0.15969,—0.36411,—0.44721
0.44721,—0.44721,—0.44721,—0.447 21,—0.447 21

IX. CONCLUSION take into account that the rates may be independent not only
of macro parameters but also of the cluster dieqy., if

mation and construct a number of analvticall ved mod Icoalescence/fragmentation depends only on the valency of
ation and construct a number ot analytically SOIVed MOCeIG, o hemical clustersThis leads to our key mathematical

of such a process. It does not matter Whethgr a motor Iane'fssumption of the above rates being constant. That is why we
computational network, space dust, or glass is a real environspqin ‘linear analytically solved master equations of that

ment to match such a script. The illustration of the prOblemclustering kinetics, which are also evolutionary-type equa-

in terms of a traffic jam is not a specific one. The knownijgns.

technical and natural phenomena of traffic jam or aggrega- The very method to solve most of those problems is in use
tion (coagulation and their evolution have been consideredof the generating function.

as processes of clusteririgucleation. But some peculiarities of applying of this method for

Brought forward in this work, the kinetics models take solving the linear differential-difference equations are re-
account of both the aggregatidooagulation and the frag- vealed. It becomes useless when the structure homogeneity
mentation(decay processes. Previous studies of nonlinearof terms in the rhs of equations discussed is violated as a
Lotka-Volterra system§7] brought us to a search for a pos- result of combining aggregation and fragmentation terms,
sibility to give a linear description of those very complicatedi.e., owing to violation of the Markovian semigroup structure
and nonlinear situations or for something akin to such a piceof those rhs The latter, as well as symmetry, momenta, and
ture. A dynamical description of some system could be subether questionge.g., universality of the three-level bunch
stituted by a stochastic one. We consider one-dimensionachemeg not included in this sketch will be considered in
cases(in the coordinate senséut the scenarios should be more detail in papers to follow, as well as some details of the
valid for the three dimensions if there is a spherical symmedutilization of aMAPLE program, used to obtain some analyti-
try. cal results, which is to be published in RE9).

When we deal with a system of a finite number of par- Other questions about the mass spectra and the single-
ticles, a natural way of the above substitution is to use theluster mass distribution in a pure aggregation process help
language of enumerated states of that system. A state of that display the combinatorial nature of the problem under
sort is characterized by the population number and probabileonsideration and its closeness to some population dynamics
ity function to reveal the system itself in this state exactly.problem. They are solved by means of the Laplace transfor-
The “three-level bunch” scheme of transitions between themation, which leads to the calculation of certain convolu-
three nearest states of the system is natural as well. Qfons. The properties of those convolutions are true due to the
course, that probability should depend upon the probabilitysomorphism between a set of generating functions with a
of something else to happen. In the case considered, it coujstoduct operation and a set a¥(g) with convolutions,
be an act of coalescence or decagissociation, fragmenta- which results in a useful formula.

In this paper, we are interested in kinetics of cluster for-

tion, etc., where the term depends on the applicatidhus, It should be remembered, that we considered two types of
we have just met a product of probabilities. What can ondragmentation: the similar fragmentation and the arbitrary
do? one. They lead to different results. Such a difference can be

The probability(rate) of the above acts could be depen- realized as a manifestation of distinction between collective
dent or independent on the system states or its particulaand more discrete additive properties of a cluster on a very
attributes. In the case of such a dependence, one can sabpstract level, far off from a specific nature of that cluster.
nothing without a special investigation. On the contrary, theMoreover, we shall see the possible existence of several ag-
rate independence of the above circumstances makes tigeegation mechanism@or a variety of reasons Thus, one
situation a linear one in the state probability function. Let usand the same stochastic description of the aggregation can

016110-7



DUBOVIK, GALPERIN, RICHVITSKY, AND LUSHNIKOV PHYSICAL REVIEW E 66, 016110 (2002

mask a number of processes diverse in their dynamical de- The reversible mapping:A—F,
tails.
However, the generality of the results is restricted. The
conjecture that the rates are constant §=const ,) is f=Z(a) so asf(z)= Z a(n)z" (A2)
nowadays somewhat at odds with what is known about mo- neNo
lecular and atomic clusters, and processes for nanoscale units _ o
of matter. Obviously, the mentioned conjecture reduces &as the inverse mappirng -,
mathematical universality as well. We are grateful to the ref-
eree for drawing our attention to the necessity of making this
remark. a=Z"Yf) soasa(n)= 3€ f(2)
Nevertheless, the authors hope that appropriate processes
of such a type may be found by the following reason. The
presented formalism is independent of any physical scale. The convolutiorr is an operation on a sét such that
The only conjecture of the possibility to draw distinction
between certain particles and intervals between them has k
been done. Such an admissibility could be combined with c=ach if c(k)zz a(k—=j)b(j). (A4)
not only a classical conception but a quantum one under 1=0
some conditions(e.g., if the first Born approximation is

dz

’
Zn+1

ne No. (A3)

valid) as well. The mappingZ is a morphism of a semigroupA(°)
The present work belongs to the stream originating fromf© @ semigroup k,-). Z maps the convolutior to the
the famous Smoluchovski articl¢8]. product
ACKNOWLEDGMENT
c=ach—Z(c)=2Z(a)Z(b). (A5)
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APPENDIX

Let A(0)=1,A(n)=0, n#0,

No=0,1,2..., Z(A)=1,Z2"Y1)=A. (AB)

a(n)=a,, neNg, i
(n)=a, € No Here is a useful formula

A={a:Ny—R}, (A1)
(2geae, .. ean) (M= > | a(jp)s -+ @n(in)

jkeN
F={f:C—C,f(z2)= > a,2"}. e _ _
neNg XAM=j1—,...,—jn). (A7)
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